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A B S T R A C T

The high uncertainty in the occurrence, space, and scale of natural disasters presents significant challenges to
reliable humanitarian relief logistics network (HRLN) design. After a disaster occurs, relief supplies and evacuees
are usually transported simultaneously through the HRLN, which occupies limited logistics infrastructure (i.e.,
roads). This phenomenon drives the integration of three crucial decisions in the design of HRLNs: the emergency
facility locations, the pre-positioning of the relief inventory, and the human evacuation planning. This composite
problem is formulated as a two-stage distributionally robust optimization model, with the two stages corre-
sponding to pre-disaster and post-disaster decision-making. To capture the characteristics of the distribution
functions of the number of evacuees and the road capacity, we design an ambiguity set using historical data and
the type-1 Wasserstein metric. We show that there is an equivalent reformulation of the abovementioned model
that can be solved by decomposition algorithms. Two versions of the decomposition algorithm, i.e., single-cut
and multi-cut versions, are developed based on the generic Benders-decomposition technique. A case study is
conducted on the Yushu earthquake in China and several managerial implications are proposed.

1. Introduction

In recent years, both the severity and number of natural disasters that
pose a direct threat to humans have clearly increased (Wang et al.,
2024). Natural disasters (e.g., earthquakes, tropical storms, hurricanes,
tsunamis, and floods) have resulted in millions of casualties and sig-
nificant economic losses (Zhang et al., 2023). For instance, it is esti-
mated that approximately twice every three years, a major hurricane
makes landfall on the Gulf of Mexico or the Atlantic coast of the US,
resulting in significant economic losses (El Tonbari et al., 2024). The
2018 Wenchuan earthquake in China’s Sichuan Province had a magni-
tude of Mw 8.0 (Fan et al., 2018), resulting in 69,227 deaths and 17,923
individuals reported missing. Between 2019 and 2021, all types of major
natural disasters affected 127 countries and regions, resulting in 27,268
deaths and a direct economic loss of USD 547,171 million (Yin et al.,
2024b). In this context, a rapid response to a disaster event undoubtedly

contributes to reducing casualties and effectively minimizing the
devastating effects of a disaster (Fan et al., 2018). For example, while the
survival rate was 91 % within 30 min of the earthquake, it subsequently
declined to 81 % on the first day after the earthquake. This figure
decreased to 37 % on the second day (Recchiuto & Sgorbissa, 2018).
Thus, it is not surprising that various government and non-governmental
organizations around the globe have made considerable investments in
resources to establish humanitarian relief logistics networks (HRLNs).
Nevertheless, how to design effective and reliable HRLNs in disaster
environments has always been a challenging task for the academic
community and (non)government departments.
In the aforementioned HRLN, two types of flows exist and flow

simultaneously: (1) relief supply flow and (2) evacuee flow. A stable relief
supply flow is a prerequisite for implementing post-disaster relief op-
erations, and these supplies are usually stored in emergency facilities
(Liu et al., 2025; Wang et al., 2024). If emergency facilities (e.g.,
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distribution centers, rescue shelters) are located close to the disaster site,
then the relief supplies in the facilities can be transported to the disaster
area more quickly, making relief operations easier (Zhang et al., 2023).
However, the occurrence of disasters is unpredictable in both time and
location and cannot be predicted until a disaster actually occurs (El
Tonbari et al., 2024). Thus, before a disaster occurs, the decision maker
(e.g., the government) must make two strategic decisions: the location
and scale of facilities such as rescue shelters and distribution centers,
and the location and quantity of relief supplies (e.g., food, basic medi-
cine, tents, and drinking water) to be pre-positioned. After a disaster
strikes, pre-positioned relief supplies are transported in the HRLN
(usually from the facility to the affected area or transferred between
facilities; see Jin et al. (2024)). This type of problem is defined by the
term emergency Facility Location and relief supply Inventory Pre-
positioning (FLIP). Notably, the population also needs to move through
the HRLN (Yin et al., 2024a). According to Salmerón and Apte (2010),
the disaster-affected population can be divided into two categories: the
stay-back population, which includes individuals who are able to remain
in the affected area but require the provision of relief supplies to ensure
their survival; and the transfer population (i.e., evacuee), which com-
prises individuals in need of emergency medical evacuation and those
who are vulnerable to the effects of secondary disasters and require
evacuation. The movement of the latter within the HRLN constitutes the
evacuee flow. Therefore, in the post-disaster stage, decisionmakers must
also consider developing an evacuation plan to achieve the rational flow
(evacuation) of evacuees in the HRLN, which is referred to as theHuman
Evacuation Planning problem (HEP). When designing HRLNs, it is
essential to consider both types of flows through the HRLN (Yin et al.,
2024a). This is because as evacuees move through the HRLN, the de-
mand for relief supply in each disaster area also changes simultaneously.
Moreover, the unpredictable nature of disasters presents a challenge

for decision makers in obtaining complete and accurate information
(Wang et al., 2024). Therefore, the primary challenge in establishing an
effective HRLN is the inherent uncertainty that exists. On the one hand,
the number of evacuees generated is uncertain. Owing to the different
scales of each disaster, there is uncertainty about the number of people
who need to be evacuated, which further creates uncertainty associated
with the quantity of relief supplies needed at each disaster area and
rescue shelter. Even in the same region, disasters occurring at different
times can result in different numbers of disaster areas and numbers of
evacuees. On the other hand, although the majority of the literature
assumes that the HRLN remains intact and operational following a
disaster, this is unlikely to be the case (Zhang et al., 2023). For instance,
after the Haiti earthquake on January 12, 2010, damaged roads and the
inability to carry out logistics meant that affected people could not
obtain enough relief supplies, which ultimately led to the death of
222,500 people (Chu& Chen, 2016). Another example is the earthquake
and subsequent tsunami in Japan in April 2011, which caused damage to
railways, highways and various logistics hubs. After the disaster, the
region’s highways were severely damaged, with nearly 76 % of them
closed. This significantly impedes emergency rescue activities (Kazama
& Noda, 2012). Moreover, in discussing the aforementioned two prob-
lems (i.e., FLIP and HEP), it becomes evident that the transportation of
both relief supplies and evacuees will inevitably occupy limited logistics
resources (i.e., road capacity). Therefore, when constructing a model for
solving both FLIP and HEP, the uncertainty of road capacity should be
incorporated into the model framework.
At present, the prevailing methodologies for addressing the afore-

mentioned uncertainties fall into two categories: stochastic program-
ming (SP) approaches and robust optimization (RO) approaches. The
fundamental idea of the SP is to construct specific scenarios, with the
assumption that each scenario has a probability of occurrence. There-
fore, the use of this type of method is inseparable from the accurate
probability distribution information of the uncertainty parameters.
Sample average approximation (SAA) is a common method for dealing
with SPs; however, the limited information on historical disasters makes

it difficult for us to know the specific distribution information (El Ton-
bari et al., 2024; Zhang et al., 2025). Even if a scenario-based SP opti-
mization model is constructed on the basis of a biased probability
distribution (i.e., we estimate this distribution function based on limited
sample data), the obtained solution is likely to exhibit low reliability.
This phenomenon is referred to as optimization bias (Smith & Winkler,
2006). In light of the aforementioned modeling deficiencies, several
researchers have begun to focus on the idea of using RO theory to
address uncertainty. To characterize uncertain parameters, this
approach constructs uncertainty sets. Nevertheless, RO theory aims to
enhance the worst case (i.e., scenario) under uncertainty sets, which
often makes optimal solutions overly conservative, and the cost remains
high (Baron et al., 2011). In recent years, with the development of un-
certain optimization theory, distributionally robust optimization (DRO)
has become a cutting-edge tool that bridges the gap between the re-
quirements of the SP approach for known distribution functions and the
tendency of the RO approach to produce overly conservative solutions.
This tool requires only partial information about the distribution, yet it
is also capable of reducing the detrimental effects of distributional am-
biguity. As a result, it is frequently employed in the mathematical
modeling of uncertainty problems in humanitarian relief logistics
management (e.g., Gao and Kleywegt (2023) and Yin et al. (2024b)).
Motivated by the disconnect between existing FILP and HEP studies

and the limitations of the SP and RO methods in addressing uncertainty,
this paper aims to investigate the collaborative optimization problem of
FLIP and HEP considering uncertainty factors (hereafter referred to as
FLI-HEP) and model it as a two-stage DRO model. Specifically, the
preparation-stage corresponds to pre-disaster decisions considered by the
decision maker, including facility location and inventory pre-
positioning. The response-stage corresponds to post-disaster decisions
considered by the decision maker, including relief supply transportation
and human evacuation planning. Two types of uncertain parameters are
considered in this model: (1) the number of evacuees and (2) the post-
disaster road capacity. The research question we attempt to answer in
this paper is as follows:

Research question. Suppose that the number of evacuees and the post-
disaster road capacity are uncertain parameters and that the decision maker
(e.g., government) has only limited historical data associated with disasters.
Two types of flows (i.e., relief supply flow and evacuee flow) exist simulta-
neously in the HRLN and occupy limited and uncertain road capacity after a
disaster. How does the decision maker solve the FLI-HEP?
Overall, this paper aims to address the gap between the practice of

disaster logistics and the literature. First, it is important to note that
relief supply transportation and evacuee evacuation occur simulta-
neously after a disaster. Therefore, both should be considered within the
same modeling framework. However, the topic of human evacuation
activities (or relief supply transportation activities) is frequently over-
looked in the existing FLIP (or HEP) literature. Second, logistics infra-
structure, such as roads, is easily destroyed during disasters. The
transportation of relief supplies and evacuees may simultaneously
occupy this critical and vulnerable logistics resource. However, in the
FLIP and HEP literature, logistics infrastructures are usually considered
to be unaffected by disasters. Finally, although the FLI-HEP can be
modeled via scenario-based SO or uncertainty set-based RO, the iden-
tification of scenarios and the construction of uncertainty sets present
difficulties when historical data are scarce. In such cases, overly con-
servative or overly optimistic solutions may have adverse consequences
for disaster relief. To address these challenges, we investigate the FLI-
HEP within the two-stage DRO modeling framework. In general, this
paper makes three contributions.
(1) We abstract an integrated HRLN design problem called the FLI-

HEP. The essential difference between our FLI-HEP and established
research is the consideration of two types of flows in the HRLN and road
disruption factors. This allows us to consider the interaction between the
two types of flows simultaneously and reflects the concept of giving
equal importance to beneficiary-centric HRLN design ideas and supply-
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centric HRLN design ideas during modeling. In our FLI-HEP, two types of
decisions, i.e., pre-disaster decisions and post-disaster decisions, are
optimized in a two-stage model. To the best of our knowledge, this is the
first paper that integrates FLIP and HEP and considers the uncertainties
associated with road capacity.
(2) We formulate the FLI-HEP as a two-stage DRO model. Moreover,

a customized ambiguity set is constructed to capture the uncertainty in
the number of evacuees and the road capacity by utilizing historical data
and type-1 Wasserstein metrics. The above method is particularly suit-
able for problems with limited historical data, such as our FLI-HEP, and
can overcome the difficulties of scenario-based SP approaches in sce-
nario recognition and the shortcomings of the over-conservatism pro-
duced by RO approaches. Furthermore, we show that our proposed
model possesses a reformulate version that can be solved by decompo-
sition algorithms. Therefore, we develop two versions of the decompo-
sition algorithm based on the generic Benders-decomposition technique,
i.e., single-cut and multi-cut versions, to explore the global optimal so-
lutions to our model.
(3) We use a real-world example, the Yushu earthquake in April 2010

in Qinghai Province, China, to evaluate the performance of the proposed
DRO model and decomposition techniques. Our experimental results
indicate that our two-stage DRO model tends to produce more robust
solutions than scenario-based models do. Additionally, several mana-
gerial insights are presented to assist decision makers in conducting
humanitarian relief activities effectively.
The remainder of this paper is organized as follows. A review of

previous studies on FLIP and HEP in the context of HRLN design is
provided in Section 2. Section 3 describes our proposed FLI-HEP and
attempts to establish the DROmodel to model the FLI-HEP. In Section 4,
we define the type-1 Wasserstein ambiguity set. Meanwhile, this model
is reformulated to another computationally tractable two-stage model
based on the properties of the type-1 Wasserstein ambiguity set. To solve
the reformulated model, we design two decomposition algorithms to
explore the global solution in Section 5. Section 6 presents a case study.
Finally, we propose the conclusions of this paper in Section 7. Several
interesting future research directions are also given in this section.

2. Literature review

Since the FLI-HEP involved in this paper is a composite problem of
FLIP and HEP, this section conducts a literature review of these two

types of research. The rampant disaster events in recent years have
brought tremendous pressure to the existing HRLN, leading to more
attention to research questions associated with disaster management.
Several systematic literature reviews have been conducted based on
different research perspectives, such as production operations manage-
ment (Gupta et al., 2016), inventory management (Ye et al., 2020), and
operations research (Besiou et al., 2018). Before conducting our litera-
ture review, we use Table 1 to organize the research methods of the
important literature involved in this section. In this table, we use the
decision column to represent the decisions involved by the decision
maker, including the four most common decisions: location decisions,
inventory level decisions, transportation decisions and evacuation de-
cisions. Specifically, location decisions and inventory-level decisions
determine where and how much to pre-position relief supplies at each
facility (e.g., distribution centers and relief shelters), respectively. The
transportation decision determines the quantity of relief supply to be
transported between facilities and disaster areas. Finally, the evacuation
decision considers where and howmany evacuees should be transported
from the disaster area.

2.1. Facility location and inventory pre-positioning in humanitarian
logistics

In recent years, research on FLIP has been widely carried out. This
research paradigm can also be called a supply-centric paradigm, which
means that ensuring the effective transportation of relief supplies is the
core concern of decision makers during the modeling process. For a
systematic review, one can refer to Sabbaghtorkan et al. (2020). The
representative literature includes Rawls and Turnquist (2010), who
considered the minimization of total cost through the analysis of the pre-
positioning of different types of relief supplies. The authors abstracted
the problem as a two-stage SP and developed a Lagrangian L-shaped
algorithm to address the model. Later, Tofighi et al. (2016) investigated
a similar problem, except that the transportation time was also taken as
one of the optimization objectives. To handle this multi-objective opti-
mization problem, the approach of weighting different objectives was
adopted, and a meta-heuristic algorithm called the differential evolution
algorithm was developed to explore some satisfactory solutions of the
model. Noham and Tzur (2018) considered several humanitarian con-
straints (the author called them equitable allocation policy and preferred
assignment policy) in the model to ensure that the relief supplies were

Table 1
Research on the papers associated with our FLI-HEP.

Reference Decision Objective Uncertainty Model formulation Algorithm

Rawls and Turnquist (2010) L/I/T Cf/Ch/Ct/Cp D/Lc/S SP (two-stage) Ls
Tofighi et al. (2016) L/I/T Cf/Ch/Ct/Cp D/Lc/S SP (two-stage) M
Noham and Tzur (2018) L/T Co/Crt D SP M
Erbeyoğlu and Bilge (2020) L/I/T Cf/Ch D RO B
Pouraliakbari-Mamaghani et al. (2023) I/T Crt D/Lc/S RO (two-stage) C
Zhang et al. (2023) L/I/T Cf/Ch/Ct/Cp D/Lc DRO (two-stage) Ls/H
Ng and Waller (2010) Ev Ce D/Lc MIP −

Özdamar and Demir (2012) T/Ev Ce None MIP H
Shahparvari et al. (2016) Ev Cf/Ce Lc MIP −

Rambha et al. (2021) Ev Cf/Ct/Car/Ri Lc SP −

Wang et al. (2021) L/I/T/Ev Cf/Ch/Ct/Cp E/Tr SP (two-stage) B
Dalal and Üster (2021) L/T/Ev Cf/Ct E RO B
Yin et al. (2024b) L/T/Ev Cf/Crc D/Lc RO (two-stage) B
Yin et al. (2024a) L/I/T/Ev Cf/Ch/Ct/Cp/Ce D DRO BC
This paper L/I/T/Ev Cf/Ch/Ct/Cp/Ce D/Lc/E DRO (two-stage) Ls

Note:
(1) L: Location, I: Inventory level, T: Supply transportation, Ep: Human evacuation.
(2) Cf: Fixed cost of opening a facility, Ch: Relief inventory holding cost, Ct: Relief supply transportation cost, Cp: Penalty cost, Co: Coverage, Crt: Response time; Ce:
Evacuation cost, Crc: Recovery cost, Ri: Risk, Car: Cost of care.
(3) D: Demand, Lc: Logistics infrastructure condition, S: Storage state, E: Evacuation rates, Tr: Travel time.
(4) RO: Robust optimization, SP: stochastic programming, MIP: Mixed-integer programming, DRO: Distributionally robust optimization.
(5) Ls: L-shaped method, M: meta-heuristic algorithm, B: Benders decomposition, C: Column-and-constraint-generation, H: heuristic algorithm, BC: branch-and-
Benders-cut algorithm.
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transported in a fair manner. This research paradigm is based on the
supply-centric paradigm and embodies some beneficiary-centric phi-
losophies. The authors directly used the solver to solve small-scale
problems and designed a tabu-search method specifically for large-
scale problems. In terms of research methodology, all of the above
studies used the SPmethod. In recent years, RO has also been adopted by
the academic community as an important theory used in solving FLIP.
For example, Erbeyoğlu and Bilge (2020) implemented a similar idea as
Noham and Tzur (2018), emphasizing more service adequacy and fair-
ness in the model rather than taking the lowest cost as the decision
maker’s priority strategy. Pouraliakbari-Mamaghani et al. (2023) spe-
cifically considered the congestion factor in relief facilities in the model
framework. They suggested that large quantities of relief supplies
transported to a facility create queues and additional penalty waiting
time. Therefore, the authors applied a stochastic-robust optimization
approach. To achieve an exact solution of the optimization model, a
column-and-constraint generation approach was developed. Very
recently, with the development of DRO theory, Zhang et al. (2023)
constructed a DRO model. They incorporated road condition enhance-
ment strategies into pre-disaster decision making by introducing type-1
Wasserstein ambiguity sets, allowing decision makers to take the
necessary means to perform road enhancements before a disaster occurs
to reduce the risk of road damage from a disaster. Considering the un-
certainty associated with the demand of relief supply and post-disaster
road capacity, the authors constructed a two-stage DRO and designed
both an exact algorithm and a heuristic algorithm to explore the solution
of the model.
Based on the above literature, it can be seen that scholars currently

consider three model frameworks—SP, RO and DRO—when modeling
FLIP. Especially in recent years, DRO has gradually become a main-
stream modeling approach. In terms of the factors considered, an
increasing number of studies are incorporating realistic factors (e.g.,
queuing and supply allocation fairness) into the model framework. In
particular, as understanding has deepened, the academic community
has begun to take into account the beneficiary-centric research para-
digm in supply-centric problems by adding corresponding constraints.
However, such studies are ultimately based on a supply-centric research
paradigm and have not been able to simultaneously consider HEP in the
modeling framework. For example, in the study of FLIP, the location
decision is limited to the distribution centers (where only the relief
supplies are stored), and the location of the rescue shelters (where
evacuees are evacuated) is not considered. Moreover, human evacuation
activities also occupy the limited capacity of logistics facilities (e.g.,
road capacity). Ignoring this behavior when considering FLIP is equiv-
alent to ideally assuming that evacuating people has no effect on the
capacity of logistics facilities. This contradicts the current situation in
which the transportation of evacuees and relief supplies occurs
simultaneously.

2.2. Human evacuation planning in humanitarian relief networks

In contrast to the research on FLIP, the research on HEP adopts a
beneficiary-centric research paradigm because the core decision of this
type of problem is the evacuation of evacuees. Early on, Ng and Waller
(2010) discussed the HEP based on cell transmission theory, laying the
foundation for this type of research. Özdamar and Demir (2012) intro-
duced the concept of hierarchical clustering and developed a clustering
algorithm to cluster nodes with different evacuation demands, which is
conducive to the subsequent optimization process. Considering the
problem complexity, the authors directly constructed a deterministic
MIP and solved it via the commercial solver CPLEX. Shahparvari et al.
(2016) incorporated the uncertainty of road capacity and shelter ca-
pacity into a model framework during the evacuation process. However,
in order to address this uncertainty, the authors used a method to
calculate the risk level of different road segments and calculate the
actual capacity of logistics facilities based on the abovementioned risk

level. Thus, the investigated problem was reformulated into a deter-
ministic problem. With the development of theory and deepening un-
derstanding in recent years, the use of scenario-based SPs has gradually
become an effective tool for modeling HEPs. For example, Rambha et al.
(2021) established a scenario-based SP that considered different types of
patients. By constructing different scenarios, the authors modeled the
different evolution processes of disaster events (i.e., storms). Under
different scenarios, the capacity of logistics infrastructure (i.e., road,
electricity and communications) is different. Since 2021, scholars have
considered the allocation of relief supplies (i.e., the interaction between
human evacuation and supply-side inventory management/supply
allocation) during the evacuation process. This reflects a paradigm shift
from being beneficiary-centric to being both supply-centric and
beneficiary-centric. For example, Wang et al. (2021) constructed a
scenario-based SP and considered the key disaster information of mobile
phone location data. The authors designed a customized Dantzig–Wolfe
decomposition algorithm to achieve an accurate solution of this
scenario-based SP. Dalal and Üster (2021) established an RO model to
optimize facility locations and relief supply quantities. The difference
fromWang et al. (2021) is that the authors considered different modes of
transport and developed a Benders decomposition algorithm. Very
recently, following Dalal and Üster (2021), Yin et al. (2024b) established
a two-stage RO model that considers the capacity uncertainty of two
types of logistics facilities, namely, relief facilities and roads, and a two-
stage decomposition algorithm was designed. In addition, the authors
also considered a variety of mitigation strategies (e.g., facility reopening
and sharing of relief supplies) to make this model more realistic.
From the perspective of research methods, we can conclude that

early research focused on building deterministic MIPs that can be solved
by commercial solvers. In recent years, RO and SP have remained the
mainstream methods for addressing HEP. From the perspective of
practical factors considered, researchers have comprehensively consid-
ered various possible uncertainties and gradually incorporated several
possible factors (e.g., different modes of transportation and resource
sharing) into the model framework. However, such studies are still
insufficient in terms of the interaction between factors involved in FLIP.
Therefore, the current lack of research on the collaborative optimization
of FLIP and HEP motivates us to conduct specific research on this topic
to increase the adaptability of the optimization technique and theory to
the complex needs of reality. To the best of our knowledge, although FLI-
HEP has the potential to establish reliable HRLNs, this research question
has not yet been investigated in the literature. The research most similar
to our FLI-HEP is a composite problem of FLIP and HEP raised by Yin
et al. (2024a). The authors developed a one-stage model with several
individual chance constraints to solve a relaxed FLIP-HEP, and their
modeling ideas still have the following shortcomings. First, the authors
assumed that the capacity of each road segment is infinite and is not
affected by disasters. Based on this assumption, the authors did not
optimize the specific transportation plan for relief supplies and evacuees
but directly assigned them according to the principle of shortest route
(or shortest cost). This assumption is overly idealistic compared with the
actual situation. Meanwhile, it also causes the problem addressed by the
authors to be not completely equivalent to the standard FLIP-HEP.
Second, the authors assumed that the number of injured people who
need to be evacuated in each time period is known and did not consider
providing relief supplies to the uninjured; instead, they assumed that the
per capita relief supply demand for the injured is a random variable. This
assumption is also inconsistent with the actual situation. Typically, relief
supplies should be provided to people in disaster areas regardless of
whether they are injured or not. The per capita demand for most relief
supplies (e.g., tents, food, drinking water) is relatively stable. Finally,
the authors constructed an ambiguity set based on moment information,
which easily leads to overly conservative solutions. Meanwhile, it lacks
some attractive statistical properties in comparison with theWasserstein
ambiguity set (Ho-Nguyen et al., 2022). To address the above short-
comings, our proposed FLI-HEP emphasizes the following points. First,
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our proposed FLIP-HEP acknowledges that both types of flows compete
for limited and uncertain logistics resource (i.e., roads) capacity. Thus,
the optimization of transportation schemes for relief supplies and
evacuees is considered. Second, we consider the uncertainty of the
number of evacuees and do not limit the relief supply to only those who
need to be evacuated, thus making the model more consistent with
actual operational situations. Third, we develop a model based on the
Wasserstein ambiguity set so that we can use its mathematical properties
to easily complete the model transformation.

3. Problem description and model formulation

As mentioned earlier, we establish a two-stage DRO model that
simultaneously incorporates the uncertainty of the number of evacuees
caused by the disaster and the post-disaster road capacity to address the
FLI-HEP. The abovementioned two stages are related to the decisions
made by decision makers in the pre-disaster and post-disaster stages,
respectively. To this end, we first present the problem description of the
FLI-HEP in Section 3.1. In Section 3.2, we develop a basic two-stage SP
model to lay the foundation for subsequent DRO model transformation.

3.1. Problem description

The FLI-HEP is described in Fig. 1. Specifically, in the preparation-
stage (see the left part of Fig. 1), decision makers prepare by opening
one or more facilities (e.g., distribution centers) to store relief resources
and one or more facilities (e.g., rescue shelters) to simultaneously store
relief resources and shelter evacuees. The location, size of each open
facility, and quantity of relief supplies to be pre-positioned in each open
facility should be determined in advance by decision makers. Because
large donations are usually received only after a disaster occurs (Stauffer
& Kumar, 2021), decision makers usually control costs in their pre-
disaster preparations. Therefore, we assume that the decision maker
has an upper limit on the budget and (s)he aims at minimizing the total
cost of pre- and post-disaster relief operations, including (1) the fixed
costs associated with facility openings, (2) the inventory holding costs of
relief supplies, (3) the relief supplies (evacuees) transportation costs, (4)
the inventory shortage penalty costs, and (5) penalty costs for failure to
evacuate evacuees. After the random variables (i.e., the number of
evacuees and road capacity) are realized, the decision maker proceeds to
the response-stage of decision-making (see the right part of Fig. 1),
which considers the transportation scheme of relief supplies to meet the
demands of the victims, as well as the evacuation plan for evacuees.

Considering that there are two types of flows in the HRLN, we
establish a multi-commodity network enabling the evacuation of evac-
uees and the transportation of relief supplies (e.g., food and clothing).
The corresponding HRLN is abstracted by graph G = (N,A), where N =

NP ∪ ND ∪ NR ∪ NO. Here, NP, ND, NR and NO denote the sets of disaster
areas, candidate locations of distribution centers, candidate locations of
rescue shelters and dummy nodes, respectively. Set A represents the set
of roads (i.e., links) in the HRLN. Each node i ∈ NP denotes a disaster
area with a total population of pi, and it is associated with an exogenous
random variable δ̃i, which denotes the proportion of evacuees to the
total population in area i ∈ NP and is realized in interval [δi, δi]. In this
way, we can use term piδ̃i to represent the number of evacuees (note that
it is uncertain) who need to be evacuated in area i ∈ NP. Correspond-
ingly, the stay-back population in area i ∈ NP can be expressed as

pi
(

1 − δ̃i
)

. Each node i ∈ ND is a candidate location of distribution

centers with a lower limit QDS (i.e., minimum relief supply storage

required to open a center) and an upper limit QDS
i for the storage of relief

supplies, where decision makers can place some relief supplies in
advance. Each node i ∈ NR is a candidate location of rescue shelters with
a maximum evacuee capacity SHi, a lower limitQRS (i.e., minimum relief

supply storage required to open a rescue shelter), and an upper limit QRS
i

for the storage of relief supplies. Considering that a disaster area can also
store relief supplies, we assume that ND ⊇ NP. Meanwhile, considering
the possibility of secondary disasters in the disaster area, we assume that
NP ∩ NR = ∅. Since rescue shelters can store relief supplies, we also
assume that ND ∩ NR = ∅. This assumption can be relaxed by intro-
ducing an additional dummy node for the location that is suitable for
establishing both a distribution center and a rescue shelter. Let xi
represent a 0 − 1 decision variable that takes a value of 1 if the candidate
facility at point i ∈ ND ∪ NR is open with a fixed cost F1i and 0 otherwise;
hi denotes the decision variable of the quantity of relief supply pre-
positioned at facility i ∈ ND ∪ NR with an inventory holding cost per
unit quantity F2i . The dummy node i ∈ NO can be added to a road to
divide it into different segments. Thus, we can characterize the different
capacities of the road at different segments.
Before a disaster occurs, the initial capacity of link (i, j) is represented

as CAPij, which represents the maximum flow that vehicles can pass
through it in a certain period of time (e.g., one day; see the definition in
Zhang et al. (2023)). After a disaster, the capabilities of some links may
be impaired. Following prior studies (e.g., Ni et al. (2018), Zhang et al.
(2023) and Che et al. (2024)), we measure this loss via a random

Fig. 1. Illustration of the FLI-HEP.
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variable ξ̃ij, which is realized in interval [0,1]. Specifically, when ξ̃ij = 0,
link (i, j) ∈ A is completely damaged. In contrast, ξ̃ij = 1 means that the
capacity of this link is not affected by the disaster. After the disaster, the
actual capacity of link (i, j) can be expressed as CAPijξ̃ij. For convenience,
the commonly used notations in this paper are listed below.

Sets
N Set of nodes in graph G, whose elements are denoted as i or j
NP Set of disaster areas
ND Set of (candidate location of) distribution centers
NR Set of (candidate location of) rescue shelters
NO Set of dummy nodes
A Set of links in graph G, whose elements are denoted as (i, j)
K Set of types of flows, whose elements are denoted as k
FW Type-1 Wasserstein ambiguity set
R+ Set of non-negative real numbers
[N] A set containing the integers from 1 to N, i.e., [N] := {1, 2,⋯,N}
Parameters
ℙ A probability distribution function of random vector
F1i The fixed cost for opening one distribution center (or rescue shelter) at

node i ∈ ND ∪ NR

F2i The unit inventory handing cost at node i ∈ ND ∪ NR

B The budget ceiling for the decision maker
QRS,
QDS

The minimum relief supply storage at a distribution center or rescue
shelter

QRS
i ,

QDS
i

The maximum relief supply storage at a distribution center or rescue
shelter i ∈ ND ∪ NR

C1ijk The unit transportation cost of type k flow transported by link (i, j) ∈ A

C2i The unit penalty cost of relief supply shortage on node i ∈ NP ∪ NR

C3i The unit penalty cost for failure to evacuate population on node i ∈ NP

CAPij The initial capacity of link (i, j) ∈ A
pi The total population on disaster area i ∈ NP

d The demand for relief supply for a person
SHi The maximum evacuee capacity of rescue shelter i ∈ NR

Random variables
δ̃i Random variable associated with proportion of evacuees to the total

population at node i ∈ NP, where δ̃ =

(

δ̃i
)

ξ̃ij Random variable associated with capacity of link (i, j) ∈ A after disaster,

where ξ̃ =

(

ξ̃ij

)

ζ̃ Random vector, where ζ̃ =
(

δ̃, ξ̃
)T

Preparation-stage decision variables
xi A binary variable, which represents whether facility at node (i.e.,

candidate location) i ∈ ND ∪ NR is opened
hi A continuous variable, which represents the quantity of pre-position relief

supply on facility located at node (i.e., candidate location) i ∈ ND ∪ NR

Response-stage decision variables
ykij A continuous variable, which represents the flow volume of kth class of

flows on link (i, j) ∈ A
si A continuous variable, which represents the shortage quantity of supply at

node i ∈ NP ∪ NR

ri A continuous variable, which represents the number of evacuees that has
not evacuated from node i ∈ NP

3.2. Basic two-stage stochastic programming model

Based on the above discussion, we propose a basic two-stage SP
model in this subsection, which is the basis for constructing the DRO
model. Then, in Section 4, we present the two-stage DRO model. The
preparation-stage SP model of the FLI-HEP can be developed as follows.

Preparation-stage SP model:

min
(x,h)

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+ EP[g(x, h, ζ̃) ]

}

(1a)

s.t.
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
⩽B (1b)

QRSxi⩽hi⩽QRS
i xi∀i ∈ NR (1c)

QDSxi⩽hi⩽QDS
i xi∀i ∈ ND (1d)

x ∈ {0,1}|ND∪NR |, h ∈ ℝ|ND∪NR |
+ , (1e)

where vector ζ̃ =
(

δ̃, ξ̃
)T

∈ Ξ ⊆ ℝ|NP |
+ × ℝ|A|

+ ; B denotes the upper limit on

the budget; P represents the probability distribution function of random
vector ζ̃; x = (xi); and h = (hi).
The function (1a) requires minimizing the total cost (i.e., the sum of

the facility opening cost F1i xi, relief supply inventory handling cost F2i hi,
and expected response-stage cost EP[g(x,h, ζ̃) ] associated with random

vector ζ̃ =
(

δ̃, ξ̃
)T
). Note that the bounded supporting space Ξ =

{

ζ̃ =

(

δ̃i, ξ̃ij

)

∈ R
|NP |
+ × R

|A|
+

⃒
⃒
⃒
⃒
⃒
δ̃i ∈ [δi, δi], ξ̃ij ∈ [0,1], ∀i ∈ NP,∀(i, j) ∈ A

}

.

Constraint (1b) requires that the preparation-stage cost does not exceed
the budget limit. Constraints (1c) and (1d) require that the quantity of
the relief supply pre-positioned at node i is greater than or equal to the
minimum quantity to open a facility and less than or equal to the ca-
pacity limitation if the decision maker opens a facility at node i. Finally,
we use constraint (1e) to restrict the domain of decision vector (x,h)T.
For simplicity in the subsequent description, the feasible region of this
preparation-stage model is represented as set dom1 =
{
(x,h)T

⃒
⃒Constraints (1b) − (1e)

}
.

Given decision vector (x,h)T and realization ζ̃, we further establish
the response-stage model. To differentiate between two types of flows
within the HRLN, we use K to denote the set of types of flows, whose
elements are denoted as k. Specifically, we use k = 1 to denote the
evacuee flow and k = 2 to represent the relief supply flow. For each link,
we use variable ykij to represent the flow volume of type k flow on this

link, where y =
(
ykij
)
. Usually, since different types of flows may have

different “consumptions” of road capacity, we use the coefficient Fack to
relate the kth type of flow to the link capacity. This approach is also used
in Rawls and Turnquist (2010), Noyan (2012), Xin et al. (2025), and Che
et al. (2024). The transportation cost of a unit of relief supply (or an
evacuee) on link (i, j) ∈ A is denoted by C1ijk. Let d be the quantity of relief
supply demanded by one person. We set the relief supply shortage
amount at node i ∈ NP ∪ NR to si, where s = (si), and the associated unit
penalty cost is C2i . Similarly, we let ri denote the number of evacuees
who have not evacuated from node i ∈ NP, where r = (ri), and the
penalty cost of one person not being evacuated is C3i . Based on the
abovementioned notation, the response-stage model is proposed to
optimize (y, s, r)T.

Response-stage SP model:

g(x,h, ζ̃) = min
(y,s,r)

{
∑

k∈K

∑

(i,j)∈A

C1ijky
k
ij +

∑

i∈NP∪NR

C2i si +
∑

i∈NP

C3i ri

}

(2a)

s.t.
∑

k∈K
Fackykij⩽CAPijξ̃ij ∀(i, j) ∈ A (2b)

∑

j:(j,i)∈A,k=1

ykji −
∑

j:(i,j)∈A,k=1

ykij⩾

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi
(

1 − δ̃i
)

d − si if i ∈ NP

− hi if i ∈ ND
SHid − hi − si if i ∈ NR

0 if i ∈ NO

(2c)

∑

j:(j,i)∈A,k=2

ykji −
∑

j:(i,j)∈A,k=2

ykij⩽

⎧
⎨

⎩

− piδ̃i + ri if i ∈ NP
0 if i ∈ ND ∪ NO
SHi if i ∈ NR

(2d)

y ∈ ℝ|A|×|K|
+ , s ∈ ℝ|NP∪NR |

+ , r ∈ ℝ|NP |
+ . (2e)

T. Zhang et al.
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The objective function (2a) minimizes the total cost associated with
the response-stage decisions, including the transportation costs of the
relief supply and the evacuation costs of evacuees C1ijkykij, as well as the
penalty costs due to the shortage of the relief supply C2i si and the failure
to evacuate evacuees C3i ri. Although the model does not contain the first-
stage decision vector x, we still use g(x,h, ζ̃) to describe the objective
function of this stage to maintain completeness. In this paper, we
consider only two types of flows that jointly occupy a limited road ca-
pacity, and Constraint (2b) is the capacity constraint. Constraints (2c)
and (2d) are the network flow balance constraints for relief supply flow
and for evacuation flow, respectively. Finally, we use constraint (2e) to
restrict the domain of decision vector (y, s, r)T. For simplicity, set
dom2 =

{
(y, s, r)T

⃒
⃒Constraints (2b) − (2e)

}
is used to indicate the

feasible region of the above response-stage model.
In daily disaster relief practice, since the decisions involved in the

first-stage model are made before the random variables are realized, the
true probability distribution of the random vector cannot be accurately
known. This poses a challenge in solving the model. Nevertheless, the
distribution function P can often be partially observed through a finite
set of independent samples (e.g., the historical realizations of the
random vector). Sometimes, scholars also directly assume that the dis-
tribution function P is known and generate a finite set of independent
samples based on P. We denote N known independent samples of vector

ζ̃ as ζ̂
1
, ζ̂
2
,…, ζ̂

N
. With these samples, the SAA approach can be used to

approximateP. At this point, the first-stage SP model can be rewritten as
follows. Here, we assume that each sample unit has an equal probability
of occurring.

JSAA = min
(x,h)∈dom1

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+
1
N
∑

n∈[N]

g(x, h, ζ̂
n
)

}

.

Typically, solutions obtained via the abovementioned SAA method
tend to lead to poor out-of-sample performance, especially when his-
torical information is limited (Bertsimas & Thiele, 2006). In addition,
overfitting is likely to occur when this method is used, especially when
the dimension of the random vector is high and the prior samples are
non-stationary (Hao et al., 2020). Considering the above situation, we
further transform the original two-stage SP model into a two-stage DRO
model in Section 4.

4. Model reformulation

DRO theory posits that although the true distribution P of a random
variable is unknown, it lies within an ambiguity set, which effectively
addresses the decision maker’s lack of knowledge about the distribution
information. We denote the abovementioned ambiguity set as F and
establish it using the type-1 Wasserstein metric and a set of historical
data (samples). For simplicity, the two-stage model proposed in Section
3 is equivalently written as the following model.

DRO:

min
(x,h)∈dom1

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+ sup

P∈F

EP[g(x,h, ζ̃) ]

}

(3)

where g(x,h, ζ̃) = min
(y,s,r)∈dom2

∑

k∈K

∑

(i,j)∈A

C1ijky
k
ij +

∑

i∈NP∪NR

C2i si +
∑

i∈NP

C3i ri.

It can be observed that a key element in the above model is F. A well-
designed ambiguity set F can effectively enhance the computational
tractability (i.e., we need the real-scale problem to be solvable in a
reasonable time), as well as the out-of-sample performance. In contrast,
inappropriate ambiguity set construction may cause over-conservatism
solutions. To this end, the type-1 Wasserstein ambiguity metric is
applied to design the ambiguity set. The subsequent subsections are
organized as follows. In Section 4.1, we first introduce the basic concepts

of this ambiguity set. Based on the type-1 Wasserstein ambiguity set,
Section 4.2 reformulates our two-stage model into an equivalent and
computationally tractable formulation, which lays the foundation for
constructing an exact algorithm for solving this two-stage DRO model.

4.1. Type-1 Wasserstein ambiguity set

Although the distribution function of the random vector ζ̃ is un-
known, we assume that it is in an ambiguity set F according to DRO
theory. With the development of information technology, historical data
of random parameters involved in uncertainty problems are becoming
easier to obtain. To obtain the probability distribution of ζ̃, it is
reasonable to approximate the true probability distribution through the
empirical distribution P̂N, which corresponds to historical data (samples).
We assume that N known independent samples of vector ζ̃ be repre-

sented by ζ̂
1
, ζ̂
2
,…, ζ̂

N
. The abovementioned empirical distribution P̂N

can be further estimated as P̂N = 1/N
∑

n∈[N]δζ̂
n , where δζ̂

n represents the
Dirac distribution (a function representing the density distribution)
concentrating unit mass at ζ̂

n
. This definitionmeans that distribution P̂N

is a discrete uniform distribution associated with N pieces of historical
data (N samples), and it regards each piece of historical data (sample) as

a support point with a probability of 1/N, i.e., P̂N{ζ̃
†
= ζ̃

n
} = 1/N,

where ζ̃
†
is the empirical random vector associated with random vector ζ̃.

Based on the above concepts, we use Definition 1 to describe the type-1
Wasserstein ambiguity set.

Definition 1. Let P 0(Ξ) be the set of probability distributions of a
random vector supported on Ξ. Given N samples of this random vector,
the corresponding empirical distribution P̂N, and the type-1 Wasserstein
metric disW(⋅, ⋅) : P 0(Ξ)× P 0(Ξ)↦[0,+∞), the type-1 Wasserstein am-
biguity set FW can be defined as

FW = {ℙ ∈ P 0(Ξ) : disW(ℙ, ℙ̂N)⩽θ } (4)

where θ is a pre-determined non-negative parameter.

It should be noted that the abovementioned set FW includes all
probability distributions in the ball with the type-1 Wasserstein metric
as the measure, P̂N as the ball center and θ ∈ R+ as the radius. In
addition, the type-1 Wasserstein metric disW(P, P̂N) in (4) can be
calculated by solving the model presented below.

disW(P, P̂N) = infEP[‖ζ̃ − ζ̃
†

‖ ]

s.t. (ζ̃, ζ̃
†
) ∼ P

ζ̃ ∼ P

ζ̃
†

∼ P̂N

P{(ζ̃, ζ̃
†

) ∈ Ξ × Ξ } = 1

where P is a joint distribution of random vector ζ̃ and empirical random

vector ζ̃
†
; norm ‖⋅‖ is defined through ‖ζ‖ = max{w+⋅ζ, − w− ⋅ζ}, where

w+ and w− are two positive parameters. When we set w+ = w− = 1, ‖⋅‖
represents the 1-norm.
It should be noted that in comparison with other ambiguity sets

designed in the literature (e.g., the moment-based set established in Liu
et al. (2019)), the set FW we consider is more flexible because it contains
a radius parameter θ ∈ R+ to control the conservatism of the model.
Decision makers with different risk preferences can easily adjust the
value of parameter θ ∈ R+ to obtain risk-averse (a larger θ ∈ R+) and
risk-neutral (a smaller θ ∈ R+) solutions. In fact, by adjusting θ or adding
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more risk measuring indicators, decision makers’ preferences for risk
may be taken into account. In addition, our model, which is based on the
type-1 Wasserstein ambiguity set, covers the SP model with discrete
distributions as a special case. Specifically, when we set θ directly to 0,
our model reduces to a two-stage SP model.

4.2. Reformulation of the two-stage model

Based on Definition 1, we can rewrite model (4) as the following
model (5):

DRO-type 1-W:

min
(x,h)∈dom1

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+ sup

ℙ∈FW

Eℙ[g(x, h, ζ̃) ]

}

(5)

where ​ g(x,h, ζ̃) = min
(y,s,r)∈dom2

∑

k∈K

∑

(i,j)∈A

C1ijky
k
ij +

∑

i∈NP∪NR

C2i si +
∑

i∈NP

C3i ri.

Note that the only difference between models (5) and (4) is that F is
replaced by FW. By examining the model, we find that model (5) is an
infinite-dimensional optimization problem. This is because it optimizes
the worst-case expectation, which involves an infinite number of di-
mensions. To make our proposed model tractable, we apply a model
reformulation technique proposed by El Tonbari et al. (2024) to address
the worst-case expectation term inmodel (5). This reformulating process
is introduced in Proposition 1.

Proposition 1. (Theorem 1 of El Tonbari et al. (2024)). By intro-
ducing an auxiliary variable λ⩾0, model (5) can be reformulated as a
master problem (MP) and several subproblems (SUPs). TheMP is written
as:

MP:

min
(x,h)∈dom1 ,

λ⩾0,ρ

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+ θλ +

1
N
∑

n∈[N]

ρn

}

(6a)

s.t. ρn⩾Θn(x, h, λ) ∀n ∈ [N] (6b)

where the SUP associated with the nth sample Θn(x,h, λ) can be
defined as follows:

SUP(n):

Θn(x, h, λ) = max
ζ̃∈Ξ

{g(x, h, ζ̃) − λdis(ζ̃, ζ̂
n
) } (7)

where dis(ζ̃, ζ̂
n
) denotes the reference distance function and dis(ζ̃, ζ̂

n
) =

‖ζ̃ − ζ̂
n
‖.

Remark 1. After the decomposition of the model in the above refor-
mulation process, the two-stage DRO finally becomes a semi-infinite
optimization model. The above decomposition is relatively straightfor-
ward in terms of technical implementation and does not necessitate any
necessary conditions. Nevertheless, to ensure that these SUPs are
feasible, model (5) requires complete recourse (Zhang et al., 2023). This
implies that for all (x, h) ∈ dom1, g(x, h, ζ̃) should be feasible. It can be
verified that our response-stage model meets this condition because for
all decisions (x,h) ∈ dom1 and ζ̃ ∈ Ξ, the response-stage model can al-
ways find a feasible solution.

However, SUP (7) still makes this model computationally intractable
because of the max‒min term resulting from the minimum operator and
the semi-infinite nature of the model. Therefore, we formulate the dual
problem of g(x, h, ζ̃) in order to eliminate the inner minimum operator in
g(x,h, ζ̃), and the dual SUP gd(x,h, ζ̃) can be expressed as:

Dual response-stage model:

gd(x,h, ζ̃) = max
(φ,π,ω)

⎧
⎪⎪⎨

⎪⎪⎩

∑

i∈NP

pi
(

1 − δ̃i
)

dπi −
∑

i∈ND

hiπi +
∑

i∈NR

(SHid − hi)πi

+
∑

i∈NP

piδ̃iωi −
∑

i∈NR

SHiωi −
∑

(i,j)∈A

φijCAPijξ̃ij

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8a)

s.t. πi − πj − Fac1φij⩽C1ij1 ∀(i, j) ∈ A (8b)

ωj − ωi − Fac2φij⩽C1ij2 ∀(i, j) ∈ A (8c)

πi⩽C2i ∀i ∈ NP ∪ NR (8d)

ωi⩽C3i ∀i ∈ NP (8e)

φij⩾0 ∀(i, j) ∈ A ∀(i, j) ∈ A (8f)

πi⩾0 ∀i ∈ NP ∪ NR (8g)

ωi⩾0 ∀i ∈ NP (8h)

where π = (πi); ω = (ωi); and φ =
(
φij
)
are dual vectors.

For simplicity in the subsequent description, we denote the
feasible region of this dual problem as domd =
{
(φ, π,ω)

T ⃒⃒Constraints (8b) − (8h)
}
, and domd is independent of

vector (x, h, ζ̃). The existence of this feature makes gd(x,h, ζ̃) feasible for
any decision vector (x,h). Therefore, strong duality exists between g(x,
h, ζ̃) and gd(x, h, ζ̃). At this time, we can derive the reformulation of SUP
(n) as:

R-SUP(n):

Θn(x,h, λ) = max
ζ̃∈Ξ

{gd(x, h, ζ̃) − λdis(ζ̃, ζ̂
n
) }

= max
(φ,π,ω)∈domd ,

ζ̃=(δ̃,ξ̃)
T
∈Ξ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑

(i,j)∈A

CAPijξ̃ijφij +
∑

i∈NP

pidπi −
∑

i∈NP

pidδ̃iπi −
∑

i∈ND

hiπi

+
∑

i∈NR

(SHid − hi)πi +
∑

i∈NP

piδ̃iωi −
∑

i∈NR

SHiωi

− λdis

((

ξ̃ij, δ̃i

)

,
(

ξ̂
n
ij, δ̂

n
i

)
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where dis

((

ξ̃ij, δ̃i

)

,
(

ξ̂
n
ij, δ̂

n
i

)
)

=

⃦
⃦
⃦
⃦
⃦

(

ξ̃ij, δ̃i

)

−
(

ξ̂
n
ij, δ̂

n
i

)
⃦
⃦
⃦
⃦
⃦
denotes the

reference distance function.
However, the bilinear terms in (9), that is, ξ̃ijφij, δ̃iπi and δ̃iωi, still

make this SUB difficult to solve. This motivates us to further introduce
Theorem 1 to achieve a more tractable reformulation by introducing
several binary auxiliary variables.

Theorem 1. For a given decision (φ, π,ω) ∈ domd, the SUP Θn(x,h, λ)
has an optimal solution at the boundary points (ξij, ξij, δi and δi) or

sample points (ξ̂ij and δ̂i) of random variables ξ̃ij and δ̃i.
Proof. See Appendix A. □

From Theorem 1, by introducing two sets of auxiliary variables, we
can define the following groups of constraints:

δ̃i =
(
δi − δ̂

n
i
)
γ+i +

(
δi − δ̂

n
i
)
γ−i + δ̂

n
i ∀i ∈ NP

ξ̃ij =
(

ξij − ξ̂
n
ij

)
β+
ij +

(
ξij − ξ̂

n
ij

)
β−
ij + ξ̂

n
ij ∀(i, j) ∈ A

γ+i + γ−i ⩽1 ∀i ∈ NP
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β+
ij + β−

ij ⩽1 ∀(i, j) ∈ A

β+
ij , β

−
ij ∈ {0,1} ∀(i, j) ∈ A, γ+i , γ

−
i ∈ {0,1}, ∀i ∈ NP.

In this way, two random variables (δ̃i and ξ̃ij) in model (8) can be
substituted with their support information (i.e., δi, δi, ξij, and ξij), sample

values (i.e., δ̂
n
i and ξ̂

n
ij) and introduced binary auxiliary variables (i.e., β

+
ij ,

β−
ij ∈ {0,1} and γ+i , γ−i ∈ {0,1}). According to the above derivation, the

corresponding bilinear terms ξ̃ijφij, δ̃iπi and δ̃iωi in (8) can be replaced by
the following constraints:

δ̃iπi =
(
δi − δ̂

n
i
)
γ+i πi +

(
δi − δ̂

n
i
)
γ−i πi + δ̂

n
i πi ∀i ∈ NP

δ̃iωi =
(
δi − δ̂

n
i
)
γ+i ωi +

(
δi − δ̂

n
i
)
γ−i ωi + δ̂

n
i ωi ∀i ∈ NP

ξ̃ijφij =
(

ξij − ξ̂
n
ij

)
β+
ij φij +

(
ξij − ξ̂

n
ij

)
β−
ij φij + ξ̂

n
ijφij ∀(i, j) ∈ A

After the above replacement process, we can finally reformulate each
SUP as a mixed-integer (binary) linear programming model by intro-
ducing the following Theorem 2.

Theorem 2. Set β+
ij , β−

ij ∈ {0,1}, γ+i , γ−i ∈ {0,1}, and each SUP is
transformed into the mixed-binary linear formulation shown below.

R-1-SUP(n):

s.t. (8b)–(8h), and

β+
ij + β−

ij ⩽1 ∀(i, j) ∈ A (10b)

γ+i + γ−i ⩽1 ∀i ∈ NP (10c)

β+
ij , β

−
ij ∈ {0,1} ∀(i, j) ∈ A (10d)

γ+i , γ
−
i ∈ {0,1} ∀i ∈ NP (10e)

Λ+
ij ⩽M(i,j)

1 β+
ij ∀(i, j) ∈ A (10f)

Λ+
ij ⩽φij ∀(i, j) ∈ A (10g)

Λ+
ij ⩾φij − M(i,j)

2

(
1 − β+

ij

)
∀(i, j) ∈ A (10h)

Λ−
ij ⩽M(i,j)

3 β−
ij ∀(i, j) ∈ A (10i)

Λ−
ij ⩽φij ∀(i, j) ∈ A (10j)

Λ−
ij ⩾φij − M(i,j)

4

(
1 − β−

ij

)
∀(i, j) ∈ A (10k)

Λ+
ij ,Λ

−
ij ⩾0 ∀(i, j) ∈ A (10l)

u+i ⩽Mi
5γ

+
i ∀i ∈ NP (10m)

u+i ⩽πi ∀i ∈ NP (10n)

u+i ⩾πi − Mi
6
(
1 − γ+i

)
∀i ∈ NP (10o)

u−i ⩽Mi
7γ

−
i ∀i ∈ NP (10p)

u−i ⩽πi∀i ∈ NP (10q)

u−i ⩾πi − Mi
8

(
1 − γ−i

)
∀i ∈ NP (10r)

u+i , u
−
i ⩾0 ∀i ∈ NP (10s)

v+i ⩽Mi
9γ

+
i ∀i ∈ NP (10t)

v+i ⩽ωi∀i ∈ NP (10u)

v+i ⩾ωi − Mi
10
(
1 − γ+i

)
∀i ∈ NP (10v)

v−i ⩽Mi
11γ

−
i ∀i ∈ NP (10w)

v−i ⩽ωi ∀i ∈ NP (10x)

v−i ⩾ωi − Mi
12
(
1 − γ−i

)
∀i ∈ NP (10y)

v+i , v
−
i ⩾0 ∀i ∈ NP (10z)

Proof. See Appendix A. □

Remark 2. After going through the decomposition and reformulation
process described in Theorem 1 and Theorem 2, our two-stage DRO (5)
is finally decomposed into a mixed-integer linear MP (6) and several
mixed-binary linear programming SUPs (10). According to the properties
of Constraints (8b) to (8h), we can directly set M(i,j)

1 = M(i,j)
2 = M(i,j)

3 =

M(i,j)
4 = max

{
max

{
0,C2i − C1ij1

}
/Fac1,max

{
0,C3j − C1ij2

}
/Fac2

}
, Mi

5 =

Mi
6 = Mi

7 = Mi
8 = C2i , and Mi

9 = Mi
10 = Mi

11 = Mi
12 = C3i . At this time,

thismodel can be solved via decomposition algorithms (e.g., the L-shaped
method). Mohajerin Esfahani and Kuhn (2018) noted that when the
recourse function of a DRO model constructed based on the type-1

Θn(x, h, λ) = max
(φ,π,ω)∈domd ,

(Λ+
ij ,Λ

−
ij ,u

+
i ,u

−
i ,v

+
i ,v

−
i )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑

i∈ND

hiπi +
∑

i∈NR

(SHid − hi)πi +
∑

i∈NP

pidπi −
∑

i∈NR

SHiωi

−
∑

(i,j)∈A

CAPij

[(
ξij − ξ̂

n
ij

)
Λ+

ij +
(

ξij − ξ̂
n
ij

)
Λ−

ij + ξ̂
n
ijφij

]

−
∑

i∈NP

pid
[(

δi − δ̂
n
i
)
u+
i +

(
δi − δ̂

n
i
)
u−i + δ̂

n
i πi
]

+
∑

i∈NP

pi
[(

δi − δ̂
n
i
)
v+i +

(
δi − δ̂

n
i
)
v−i + δ̂

n
i ωi
]

− λ
∑

(i,j)∈A

[
w+

(
ξij − ξ̂

n
ij

)
β+
ij + w−

(
ξ̂
n
ij − ξij

)
β−
ij

]

− λ
∑

i∈NP

[
w+

(
δi − δ̂

n
i
)
γ+i + w−

(
δ̂
n
i − δi

)
γ−i
]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10a)
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Wasserstein ambiguity set can be represented as the piecewise maximum
of a finite number of concave functions, then this model can be trans-
formed into a computationally tractable form. Moreover, in the absence
of support constraints on the random vector, the two-stage DRO model
constructed based on the type-1 Wasserstein ambiguity set is equivalent
to a tractable linear programmingmodel (Hanasusanto&Kuhn, 2018). In
the event that thepolyhedral feasible set of the dual second-stagemodel is
bounded, the two-stage DRO model can be solved by implicitly
enumerating the vertices of the feasible set using a column-and-
constraint generation algorithm (Saif & Delage, 2021). However, these
favorable mathematical properties are not applicable to our FLI-HEP
because (a) our recourse function is not piecewise concave; (b) the
random vector in FLI-HEP has a bounded support set; and (c) the poly-
hedral feasible set of the dual second-stage model is unbounded. There-
fore, in Section 5, we design an algorithm based on the L-shaped method
to achieve an efficient solution of the model.

5. Solution methodology

After the reformulation in the previous section, the DRO model can
be solved via decomposition algorithms. Therefore, this section designs
two versions of the decomposition algorithm based on the classic L-
shaped method. Notably, two-stage SP models can also be solved using
similar techniques. In our decomposition algorithm framework, the MP
is first solved to obtain a trial solution for the preparation-stage model.
Next, based on the above trial solution, a group of SUPs (i.e., R-1-SUP
(n)) are solved when the values of the variables in the preparation-stage
model are fixed. Then, a series of cuts can be obtained by sequentially
solving these SUPs. In this section, we consider two methods for
generating cuts: single-cut Benders and multi-cut Benders. Finally, these
newly generated cuts are added to the MP, which is then solved again.
The above iterative steps are repeated until no new cuts can be added by
solving the SUPs. In some studies, cuts are divided into feasible cuts and
optimal cuts according to their different functions. The former is
responsible for ensuring the feasibility of the primal response-stage
model, whereas the latter approximates the optimal objective function
value of the primal response-stage model. Since our SUPs are always
feasible (see the conclusion proposed in Remark 1 in Section 4.2),
feasible cuts are not necessary in our algorithm design process. In the
following subsections, Section 5.1 and Section 5.2 introduce our two
versions of cuts (i.e., single-cut and multi-cut) added for MP. Section 5.3
introduces several specific acceleration strategies for solving the MP.

5.1. Single-cut Benders for the master problem

In the single-cut Benders, we let parameter tʹ represent the number of
iterations, and the MP can be reformulated as the following model (11)
by adding several optimal cuts (11b). Note that cut (11b) is generated
based on the dual information provided by R-1-SUP(n). After one iter-
ation of the algorithm, a cut can be obtained. The pseudo code is shown
in Algorithm 1. Let n1 denote the number of decision variables in the
preparation-stage and m1 denote the number of constraints in the
preparation-stage. Similarly, n2 and m2 denote the number of decision
variables and constraints in the response-stage, respectively. The
computational complexity of Algorithm 1 can be written as

O

(
t⋅
[
(n1 +m1 + tʹ)3 + N⋅(n2 +m2)3

] )
.

Algorithm 1: Single-cut version of the algorithm
1: Set t = 0.
2: Solve the MP (11), i.e., model (11). Let (x*,h*, β*) be the optimal solution

obtained. If t = 0, then β and the optimal cut is ignored.
3: Set

(
xt ,ht , βt) = (x*,h*, β*).

4: For n = 1: N do
5: Solve R-1-SUP(n) based on

(
xt ,ht , βt). Let Θ*n(x,h, λ) and vector

(
πt*
i ,ωt*

i ,Λ
t+*
ij ,Λt− *

ij ,φt*
ij , u

t+*
i , ut− *i , vt+*i , vt− *i , βt+*

ij , βt− *
ij , γt+*i , γt− *i

)T
be the

(continued on next column)

(continued )

optimal objective function value and the optimal solution obtained by solving
SUP R-1-SUP(n).

6: End for
7: Calculate OBJt = 1/N

∑

n∈[N]
Θ*n(x,h, λ).

8: If OBJt⩽β then
9: Break and the output of model MP (11) is an optimal solution.
10: Else
11: Set t = t+1 and introduce optimal cut (11b) into MP (11). Goto Line 2.
12: End if

Single-cut MP:

min
(x,h)∈dom1 ,

λ⩾0,β

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+ θλ + β

}

(11a)

s.t.β⩾
1
N
∑

n∈[N]

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑

i∈ND

hiπt*
i +
∑

i∈NR

(SHid− hi)πt*
i +
∑

i∈NP

pidπt*
i −
∑

i∈NR

SHiωt*
i

−
∑

(i,j)∈A

CAPij

[(
ξij − ξ̂

n
ij

)
Λt+*

ij +
(

ξij − ξ̂
n
ij

)
Λt− *

ij + ξ̂
n
ijφ

t*
ij

]

−
∑

i∈NP

pid
[(

δi − δ̂
n
i
)
ut+*
i +

(
δi − δ̂

n
i
)
ut− *
i + δ̂

n
i πt*

i
]

+
∑

i∈NP

pi
[(

δi − δ̂
n
i
)
vt+*i +

(
δi − δ̂

n
i
)
vt− *i + δ̂

n
i ωt*

i
]

− λ
∑

(i,j)∈A

[
w+

(
ξij − ξ̂

n
ij

)
βt+*
ij +w−

(
ξ̂
n
ij − ξij

)
βt− *
ij

]

− λ
∑

i∈NP

[
w+

(
δi − δ̂

n
i
)
γt+*i +w−

(
δ̂
n
i − δi

)
γt− *i

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀t

∈[t ']
(11b)

where
(

πt*
i ,ωt*

i ,Λ
t+*
ij ,Λt− *

ij ,φt*
ij , u

t+*
i , ut− *i , vt+*i , vt− *i , βt+*

ij , βt− *
ij , γt+*i , γt− *i

)T

is the optimal solution obtained by solving R-1-SUP(n) at the tth itera-
tion of the algorithm.

5.2. Multi-cut Benders for the master problem

The structure of our SUPs also allows us to extend single-cut Benders
to multi-cut versions. In the multi-cut version Benders, we add the
following optimal cut (12) to the MP if ρn is less than the optimal
objective function value of R-1-SUP(n) for each sample n. The pseudo
code of this multi-cut Benders is shown in Algorithm 2. The computa-
tional complexity of Algorithm 2 can be written as

O

(
t⋅
[
(n1 +m1 + N⋅t́ )3 + N⋅(n2 +m2)3

] )
.

Algorithm 2: Multi-cut version of the algorithm
1: Set t = 0 and flag = 0.
2: Solve the MP (with multi-cut), i.e., model (12). Let

(
x*, h*, ρ*n

)
be the optimal

solution obtained. If t = 0, then viewing ρn as an unbounded variable and the
optimal cut constraint (12b) are ignored.

3: Set
(
xt ,ht , βt) =

(
x*,h* , ρ*n

)
.

4: Forn = 1: N do
5: Solve R-SUP(n) based on MP solution

(
xt ,ht , βt). Let Θ*n(x,h, λ) and vector

(
πt*
i ,ωt*

i ,Λt+*
ij ,Λt− *

ij ,φt*
ij , u

t+*
i , ut− *i , vt+*i , vt− *i , βt+*

ij , βt− *
ij , γt+*i , γt− *i

)T
be the

optimal objective function value obtained by solving SUP R-SUP(n).
6: If Θ*n(x,h, λ)⩾ρn then
7: Introduce optimal cut (12b) into MP.
8: Set flag = 1.
9: End if
10: End for
11: If flag = 0 then
12: Break and the output of model MP (12) is an optimal solution.
13: Else

(continued on next page)
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(continued )

14: Set t = t + 1, flag = 0.
15: Goto Line 2.
16: End if

Multi-cut MP:

min
(x,h)∈dom1 ,

λ⩾0,ρ

{
∑

i∈ND∪NR

(
F1i xi + F2i hi

)
+ θλ +

1
N
∑

n∈[N]

ρn

}

(12a)

s.t. ρn⩾ −
∑

i∈ND

hiπt*
i +

∑

i∈NR

(SHid − hi)πt*
i +

∑

i∈NP

pidπt*
i −

∑

i∈NR

SHiωt*
i

−
∑

(i,j)∈A

CAPij

[(
ξij − ξ̂

n
ij

)
Λt+*

ij +
(

ξij − ξ̂
n
ij

)
Λt− *

ij + ξ̂
n
ijφ

t*
ij

]

−
∑

i∈NP

pid
[(

δi − δ̂
n
i
)
ut+*
i +

(
δi − δ̂

n
i
)
ut− *
i + δ̂

n
i πt*

i
]

+
∑

i∈NP

pi
[(

δi − δ̂
n
i
)
vt+*i +

(
δi − δ̂

n
i
)
vt− *i + δ̂

n
i ωt*

i
]

− λ
∑

(i,j)∈A

[
w+

(
ξij − ξ̂

n
ij

)
βt+*
ij + w−

(
ξ̂
n
ij − ξij

)
βt− *
ij

]

− λ
∑

i∈NP

[
w+

(
δi − δ̂

n
i
)
γt+*i + w−

(
δ̂
n
i − δi

)
γt− *i

]

∀t

∈ [t '], n ∈ [N]
(12b)

where
(

πt*
i ,ωt*

i ,Λ
t+*
ij ,Λt− *

ij ,φt*
ij , u

t+*
i , ut− *i , vt+*i , vt− *i , βt+*

ij , βt− *
ij , γt+*i , γt− *i

)T

is the optimal solution obtained by solving SUP(n) at the tth iteration of
the algorithm.

Remark 3. Some scholars believe that this multi-cut version is usually
more effective when the quantity of historical samples (associated with
random variables) is not significantly larger than the quantity of con-
straints of the preparation-stage model (Birge & Louveaux, 2011).
Meanwhile, problems with fewer scenarios are typically solved faster via
multi-cut approaches (Bertsimas et al., 2024). Scholars also noted that
the relationship between the number of decomposition algorithm iter-
ations and the scale of the MP varies depending on the specific research
problem and the number of scenarios (Bertsimas et al., 2024). For
example, de Camargo et al. (2008), You and Grossmann (2013), and
Birge and Louveaux (2011) all reported mixed results on the perfor-
mance of these two versions of cuts. Therefore, considering the debate
on the applicability of these two types of cuts, we conduct numerical
experiments on these two decomposition algorithms in the next section.
For a detailed discussion of these two types of cuts, interested readers
may refer to Gassmann (1990).

5.3. Acceleration strategy for the master problem

Although we present two versions ofMP (i.e., (11) or (12)), they are
both MIPs, a type of model that is time-consuming to solve using com-
mercial solvers. Therefore, we further provide the following accelera-
tion strategies to improve the efficiency of solving the MP.
(1) Strategy 1: At each iteration of our proposed algorithm, the MP

must be solved, which may result in a significant increase in solution
time because solving the MP is usually time-consuming, especially for
large-scale problems. Therefore, to solve the above problem, one
possible approach is to apply a branch-and-cut (B&C) scheme. Alter-
natively, we can also leverage the built-in lazy constraint callback-based
implementation of commercial solvers (e.g., CPLEX 12.4 and later ver-
sions). In the context of solving an MIP, we can observe that, upon the
B&C scheme identifying an incumbent, lazy constraint callback is trig-
gered. This approach allows us to solve the MP only once, thereby

reducing the computational time needed. Nevertheless, the use of this
callback function may not always prove advantageous, as CPLEX dis-
ables two other functions (i.e., the dynamic search and the deterministic
parallelism) at the same time. For a detailed introduction to this func-
tion, interested readers can refer to Dalal and Üster (2018).
(2) Strategy 2: When the scale of the problem increases further,

another idea is to develop a suitable (meta)heuristic algorithm to obtain
a near-optimal solution. Taking the implementation of the genetic al-
gorithm as an example, we can first encode the solution of the MP and
then implement selection, crossover and mutation operations on the
chromosome obtained after encoding. An elite retention strategy can
also be further implemented after these operations. Next, the above
operations are executed repeatedly until the algorithm termination
condition is triggered. Finally, the satisfactory chromosomes obtained
by the algorithm are decoded to obtain a satisfactory solution for the
MP. For interested readers, one may refer to Xin et al. (2023).

6. Numerical experiments

This section describes how our model is applied to the 2010 earth-
quake that struck Yushu, China (the affected area is shown in Fig. 2).
Yushu city is located in Qinghai Province, is situated on the eastern
portion of the Tibetan Plateau and encompasses an area of 15,700
square kilometers. Its average elevation above sea level is 4,493.4 m,
with the terrain predominantly comprising mountainous plateaus. In
2010, this region experienced 3 earthquakes and more than 10 after-
shocks within 5 h, and the earthquakes reached a maximum magnitude
of Mw 7.1. Over 1,000 aftershocks occurred in the following two days. A
considerable proportion of the residents in the affected areas, some of
whommay not have been harmed by the first earthquake, suffered more
from subsequent earthquakes and aftershocks. In the event of a disaster,
one can see that it is highly important that decision makers are able to
coordinate the distribution of relief supplies and the evacuation of
evacuees.
In the following sections, we first introduce the parameter settings in

Section 6.1. Then, in Section 6.2, we solve different sizes of problems to
explore the computing performance of the two decomposition algo-
rithms. In Section 6.3, several sensitivity analyses are performed to
explore the impact of considering population evacuation and various
parameter changes (e.g., the Wasserstein radius and penalty costs) on
the results. Out-of-sample tests are conducted in Section 6.4 to evaluate
the robustness of the proposed two-stage model. Section 6.5 provides
management insights based on the results. All these numerical experi-
ments are conducted in a commercial solver called GAMS on a personal
laptop with a Core Ultra 5-125H CPU and 12 GB of RAM.

6.1. Data description

When setting the parameters in this paper, we refer mainly to the
case study of Ni et al. (2018). As illustrated in Fig. 2(b), we investigate
an HRLN consisting of 12 nodes and 12 links. We consider the nodes in
the inner circle (i.e., nodes 1, 2, 3, 4, 9, and 12) as disaster areas and
candidate locations of distribution centers and the nodes in the outer
circle (i.e., nodes 5, 6, 7, 8, 10, and 11) as candidate locations of rescue
shelters. The distances between different nodes are obtained from the
Distance Matrix API (DMAPI) provided by Google. The fixed cost for
opening one distribution center (or rescue shelter) and the unit in-
ventory handing cost (i.e., pre-position cost for unit relief supply) are
listed in Table 2. Their values are set according to Appendices B.2.1 and
B.2.2 of Ni et al. (2018). For the convenience of modeling, we assume
that facility location and relief supply pre-position are determined by
the same government department. In other words, both types of de-
cisions (i.e., location decisions and pre-position decisions) share the
same budget, and we set the government budget for pre-disaster de-
cisions to 200,000. We define a unit of relief supplies as the quantity of
relief supplies necessary to sustain one hundred adults for one day (such
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as food and drinking water). From experience, the initial 72-hour period
after a disaster is of paramount importance for the implementation of
effective relief strategies. Therefore, the total 3-day relief supply
requirement is considered a per capita requirement for each affected
individual. Then, we determine the proportion of evacuees to the total
population (i.e., δ̃i) and the capacity of links (i.e., ξ̃ij) after the occur-
rence of the disaster based on local demographics and geography. The
population within Yushu is relatively dispersed, the land area is large,
and there is a large quantity of mountainous terrain with insufficient
road access. Taking the above actual situation into consideration, the
total population in each node is randomly generated in the uniform
distribution U(1500,2500), and the proportion of evacuees to the total
population and the post-disaster link capacity in each sample are
randomly generated in the distributions U(0.3,0.6) and U(0.3,0.5).
Similar to Ni et al. (2018), we generate a total of 50 sets of samples for
the experiment. The maximum relief supply storage at a distribution
center or a rescue shelter is set to obey the distribution U(800,1200). We
next focus on the transportation costs, which are calculated by multi-
plying the unit cost and distance. Specifically, the transportation cost
per meter for one evacuee and unit relief supply is generated from U(0.1,
0.2) and U(0.01,0.05), respectively. The unit penalty cost of the relief
shortage on each node follows a uniform distribution in the interval
[4, 6]. For the penalty cost associated with the failure to evacuate the
population, we conduct a number of experiments to determine a value
large enough to discourage unmet evacuation demands.

6.2. Model performance

To investigate the model performance, a network with 4 nodes and
links (i.e., 4 × 4) and a network with 12 nodes and links (i.e., 12 × 12)
are considered. We first compare the optimal solutions obtained by the
two versions of the algorithm. Table 3 lists the objective value, number
of iterations, and selected nodes of each algorithm for the two networks.
Judging from the objective functions and solutions obtained by the two
approaches, they are basically consistent. Second, we compare the
program running times of two different algorithms. To this end, we keep
the sizes of both networks constant and gradually change the number of
samples. We set the number of samples input to the model from 10 to 80,
with an interval of 10. The program running times are reported in
Table 4. For both networks, the proposed multi-cut and single-cut
decomposition algorithms can obtain optimal solutions in 3,600 s.
Therefore, the optimality gap of all the solutions in Table 4 is 0.0 %. We
can observe that the multi-cut approach performs better in the simplified
network, whereas the single-cut approach calculates faster when the
structure of the network is more complex. Therefore, these two methods
can be applied to different real-world situations and provide efficient
solutions. Third, we discuss the convergence of the two algorithms. As
we can see from Fig. 3, the gap between the upper and lower bounds of
the two types of algorithms decreases throughout the iteration process,
and a smaller gap can be obtained in a relatively short time.

Fig. 2. The affected area and the HRLN (source: Sun et al. (2019)).

Table 2
Parameter values.

Node 1 2 3 4 5 6 7 8 9 10 11 12

F1i 2869 2613 2636 1633 1692 1787 2980 1940 1705 2985 1701 2823
F2i 13.06 23.38 12.66 34.65 12.43 24.13 22.95 24.87 14.28 11.71 23.33 11.69

Table 3
Optimal solutions obtained by the two algorithms.

Item Multi-cut approach Single-cut approach

4 × 4 12 × 12 4 × 4 12 × 12

Objective
value

101373.12 274654.39 101822.47 274045.53

# of
iterations

8 50 17 24

Selected
nodes

Jiegu (18.7), Xialxiu (46.3),
Batang (505.4),
Longbao (499.7)

Jiegu (598.5), Batang (835.9), Nangqen
(2294.5), Qumarleb (1257.3)

Jiegu (18.4), Xialxiu (46.3),
Batang (505.4),
Longbao (499.7)

Jiegu (575.6), Batang (830.6), Nangqen
(2312.5), Qumarleb (1254.4)
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6.3. Computational results and sensitivity analysis

6.3.1. Effect of considering evacuees
We further conduct several experiments to investigate the effect of

considering evacuees in the network. To this end, we obtain the optimal
solutions of the preparation-stage model without considering evacuees
and then institute it into the response-stage of the proposed model to
obtain the out-of-sample total cost. After the above operations, we
obtain the results shown in Table 5.
Interestingly, when we do not consider the evacuation planning

factor, the out-of-sample total cost increases. The reason for this change
is that the opening of a facility necessitates the fulfillment of its mini-
mum relief supply storage requirements. When considering evacuation
planning, more relief shelters are opened, allowing some relief supplies
to be located where transportation costs could be reduced. This means
that a decentralized pre-position relief supply model can reduce regional
transportation costs. In terms of the quantity of relief supplies and the
opening of facilities, our model attempts to open more facilities and pre-

Table 4
Execution times (in seconds) of the proposed approach.

N Multi-cut approach Single-cut approach

4 × 4 Optimality gap 12 × 12 Optimality gap 4 × 4 Optimality gap 12 × 12 Optimality gap

10 47 0.0 % 184 0.0 % 130 0.0 % 154 0.0 %
20 50 0.0 % 436 0.0 % 135 0.0 % 189 0.0 %
30 154 0.0 % 656 0.0 % 426 0.0 % 496 0.0 %
40 210 0.0 % 1013 0.0 % 593 0.0 % 616 0.0 %
50 269 0.0 % 1616 0.0 % 663 0.0 % 983 0.0 %
60 337 0.0 % 2013 0.0 % 923 0.0 % 985 0.0 %
70 405 0.0 % 2657 0.0 % 1090 0.0 % 2091 0.0 %
80 480 0.0 % 3415 0.0 % 1110 0.0 % 2666 0.0 %

Fig. 3. Convergence of the multi-cut and single-cut approaches.

Table 5
Comparisons of models with and without evacuation planning.

Calculation
indicators

Model with evacuation planning
(our model)

Model without
evacuation planning

Average out-of-
sample total cost

277219.5 283105.4

Maximum out-of-
sample total cost

289138.8 294025.7

Minimum out-of-
sample total cost

265517.8 274677.2

Quantity of relief
supplies

4986.0 4422.8

Opening facilities Xialaxiu, Nangqen, Xiewu,
Xiaosumang, Shanglaxiu, Zhidoi,
Qumarleb

Batang, Nangqen,
Serxu, Qumarleb
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position more relief supplies than does the case without considering
evacuees. The above situation is in line with our expectations. Evacuees
need rescue shelters to provide them with survival guarantees. The
presence of evacuees will inevitably lead decision makers to choose to
increase the number of open facilities and the storage of relief supplies.
These results demonstrate the importance and necessity of simultaneous
consideration of the transportation of relief supplies as well as evacua-
tion planning in HRLN design.

6.3.2. Sensitivity analysis for the Wasserstein radius
In this subsection, we conduct extensive experiments under various

Wasserstein radii to analyze the effect of the degree of uncertainty. We
create different scenarios by setting the radius θ in the interval [0,2].
Specifically, our model reduces to a deterministic model when we set the
value of θ to 0. Fig. 4 illustrates the changes in the total cost and quantity
of relief supplies pre-positioned under different scenarios (i.e., Wasser-
stein radius). One can observe that there is a significant increase in the

optimal value of the model as the radius θ increases, along with an in-
crease in the quantity of pre-positioned relief supplies. In particular, the
total cost paid by the decision maker increases by approximately 50 % as
θ changes from 0 to 2. The change in the quantity of pre-positioned relief
supplies is even more dramatic, as it increases by more than 10 times
(from close to 600 to more than 6,000). In contrast to the deterministic
scenario (i.e., scenario θ equals 0), we find that as the uncertainty
(radius θ) expands, the solution to the problem becomes more conser-
vative. This observation also indicates that a lack of awareness of un-
certainty may have significant consequences. It is evident that a relief
supply pre-positioning scheme when θ is assumed to be 0 will be unable
to cope with a disaster situation when θ is assumed to be a value other
than 0, such as 1 or 2. This ignorance could lead to a supply gap during
pre-disaster preparation. However, if too much relief supply is pre-
positioned, it will cause redundancy and waste of resources. There-
fore, the value of θ should not be set as large as possible. The decision
maker needs to be careful in determining the value of θ because it can

Fig. 4. Total cost and quantity of relief supplies under different Wasserstein radii θ.

Fig. 5. Impact of penalty cost for unmet relief and evacuee demand.
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lead to an over-conservatism decision when θ is large.

6.3.3. Sensitivity analysis for unit penalty cost
This section further discusses the impact of the unit penalty cost on

the optimal solutions. To this end, we conduct numerical experiments
with different unit penalty costs

(
C2i ,C3i

)
for relief supply shortages and

failures to evacuate populations under seven different scenarios, i.e.,
{(2.5,5), (5,10), (10,15), (10,20), (15,20), (10,30), (15,30) }. We use
Fig. 5 and Table 6 to report the results under seven scenarios, and we can
observe that the total cost, quantity of relief supplies pre-positioned, and
number of facilities opened increase as the value of the unit penalty cost
increases. This suggests that when the impact of unmet demands for
relief supplies and evacuees is greater, decision makers tend to be more
conservative in their decisions. In other words, there may be serious
consequences during the corresponding stage of a disaster if decision
makers are not fully cognizant of the impact of unmet demands. When
the unit penalty cost is low (e.g.,

(
C2i ,C3i

)
= (2.5,5)), we find that de-

cision makers will only open a facility that is pre-positioned with less
than 700 units of relief supply. However, a very large quantity of relief
supply demand (over 4,000 units) is not met, in contrast to when

(
C2i ,

C3i
)
is greater than (10,30). This observation implies that the magnitude

of unit penalty costs is crucial, as lower costs results in insufficient relief
supplies and a smaller number of facilities opened, which may ulti-
mately lead to an increased number of casualties. Conversely, a higher
value may result in the waste of supplies. Moreover, it is worth noting
that there are some clear thresholds for the impact of unit penalty costs.
Fig. 5 clearly shows two characteristics. First, when

(
C2i ,C3i

)
increases

from (10,20) to (15,20), neither the solution of the model nor the value
of the objective function significantly changes. However, as

(
C2i ,C3i

)

continues to grow, a dramatic increase in total cost, the quantity of relief
supplies, and the number of facilities opened can be found. Second, after
(
C2i ,C3i

)
⩾(10,30), the changes in the total cost, quantity of relief

supplies, and number of facilities opened remain stable. Considering the
parameter settings, the decision maker should set the value of the unit
penalty cost to (10,30) since it is a reliable choice. Meanwhile, higher
value settings are unable to deliver substantial improvements.

6.4. Out-of-sample analysis

In this subsection, we conduct several out-of-sample tests to inves-
tigate the out-of-sample performance of our model. Specifically, we
construct the samples of ζ̃ on the basis of distribution U(μ − κσ, μ + κσ),
where μ and σ are the mean and standard deviation, respectively, as
stated in Section 6.1, and where κ⩾0 is a scale parameter to control the
uncertainty. We generate 1,000 samples for each of the three scenarios
with κ = 1, 1.5, and 2 and substitute the optimal solution of the original
model into the response-stage model to resolve it, obtain the out-of-
sample total cost (see Fig. 6(a)) and calculate the out-of-sample disap-
pointment (refer to DIS, see Fig. 6(b)) on the basis of Wang et al. (2023).
This indicator is used to indicate the difference between the cost
required to implement an optimal decision and the estimated cost. The
calculation method of this indicator is shown in Equation (13).

DIS = max
{
OPC − MOC

MOC
,0
}

× 100% (13)

where OPC and MOC denote the out-of-sample cost and optimal cost,
respectively.
We find that in the context of different distribution functions, as

parameter κ changes (i.e., the degree of uncertainty increases), the
actual out-of-sample cost generated is concentrated. We show the out-of-
sample total cost under different scenarios in Table 7. As the parameter κ
increases, the increase in total cost is relatively stable (approximately
10 %). In terms of out-of-sample disappointment, our proposed model
can always control the disappointment indicator DISwithin a reasonable
range. In most cases, the DIS is within 10 %. The above experimental
results prove that the out-of-sample performance of our proposed model
is satisfactory.

Table 6
Nodes selected under different penalty cost settings.
(
C2i ,C3i

) Node(s)
(2.5, 5) Qumarleb
(5, 10) Nangqen, Xiwwu
(10, 15) Nangqen, Chindu, Xiaosumang
(10, 20) Xialaxiu, Chindu, Xiaosumang, Zhidoi
(15, 20) Nangqen, Xiaosumang, Serxu, Zhidoi
(10, 30) Xialaxiu, Nangqen, Xiewu, Xiaosumang, Shanglaxiu, Zhidoi, Qumarleb
(15, 30) Batang, Nangqen, Xiewu, Chindu, Shanglaxiu, Serxu, Qumarleb

Fig. 6. Out-of-sample results with κ = 1, κ = 1.5, and κ = 2.

Table 7
Average, maximum and minimum out-of-sample total costs.

Case κ = 1 κ = 1.5 κ = 2

Average 277219.5 291632.7 305281.6
Maximum 289138.8 307813.1 334679.3
Minimum 265517.8 269447.8 275675.2
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In addition, through out-of-sample analysis, we can also compare our
method with common modeling methods (e.g., stochastic program-
ming). To this end, we set parameter κ = 1 and generate 1,000 samples
and use them as inputs for the two-stage DRO model (5) and two-stage
SP model (i.e., (1) to (2)). We then calculate the out-of-sample disap-
pointment values of the two models. For the 1,000 disappointment
values corresponding to each model, we calculate their maximum,
minimum, average, 90th percentile and 95th percentile. These values are
reported in Table 8. Table 8 shows that, except for the minimum
disappointment value corresponding to the two models, model (5) is
better in all other indicators. This means that, compared with the SP
model, our DRO model has better out-of-sample performance. This is
because when faced with various simulated scenarios, the actual costs
incurred when implementing our model’s solutions are generally lower
than those of the SP model.
Finally, we explore the reasonable value of the Wasserstein radius in

Section 6.3.2. Here, we still set parameter κ = 1 and generate 1,000
samples. We solve our model (5) and conduct 10 experiments by setting
θ between 0.2 and 2 with a step size of 0.2. Using the solutions obtained
from the 10 experiments and the 1,000 samples generated, we can
calculate 1000 out-of-sample disappointment values for each θ. The
maximum, minimum, average, 90th percentile and 95th percentile values
of these disappointment values for each θ are shown in Fig. 7. Overall, as
θ increases, all the indicators gradually decrease. This is because θ is a
parameter that controls the size of the ambiguity set. As it increases, the
obtained solutions become less conservative. Considering Fig. 7 and the
costs shown in Fig. 4, we believe that the decision maker can set θ to 0.8.
At this point, the cost to decision makers is not high, and the model also
shows good out-of-sample performance.

6.5. Managerial insights

This subsection discusses the managerial insights from our model
and solution methodology based on the above numerical experiments.

• Our proposed model and algorithm can provide useful decision tools
for the design of HRLNs while considering uncertainty for decision
makers in government emergency response sectors. The uncertainty
of disaster occurrence and the lack of relevant historical data have
created many challenges for decision makers in making disaster
prevention decisions. When aware of the uncertainty of a disaster,
decision makers can develop target schemes for emergency facility
locations, relief supply pre-position, affected population evacuation,
and relief supply distribution based on our model. For example, by
studying the calculation results in Section 6.3.1, decision makers can
obtain a better understanding of the relationship between the degree
of uncertainty and the optimal solutions and formulate realistic
policies accordingly.

• This paper illustrates the importance of simultaneously considering
two types of flow in the design of HRLNs. On the one hand, both
types of flows will crowd out the same, scarce infrastructure capacity
(i.e., road capacity). On the other hand, the flow of evacuees in the
HRLN affects the direction of the relief supply flow because evacuees
also need relief supplies. Decision makers should understand the
conflicts between relief supply flow and evacuee flow at the
response-stage and take them into account in decision-making
frameworks. This idea plays a critical role in mitigating road
congestion that may occur after a disaster. Meanwhile, the evacua-
tion of the transfer population leads to a shift in the location of the
relief supply demand, which is a more realistic consideration that our
model can bring to the table.

• The setting of penalty costs for unmet relief supply demands and
evacuation demands requires careful consideration. The location and
number of facilities, as well as schemes for transporting relief sup-
plies and evacuees, are strongly influenced by the penalty cost. De-
cision makers can achieve trade-offs between different objectives by
analyzing the relationships between unit penalty costs, total costs
and quantities of pre-positioned relief supplies.

• The solution approaches are designed to provide various options for
HRLNs of different sizes. Our proposed multi-cut and single-cut
versions perform well with different sizes of nodes and links.
Therefore, in realistic applications, a suitable method for solving the
problem can be selected according to the actual problem size.

7. Conclusion

The high uncertainty of natural disasters (e.g., time uncertainty and
spatial uncertainty) has led to booming research on the design of hu-
manitarian relief logistics networks (HRLNs). In the actual imple-
mentation of relief activities, both the supply of relief supplies and the
evacuation of evacuees inevitably utilize fragile logistics infrastructure,
such as roads. Nevertheless, the majority of existing research has
concentrated on a single area of study, resulting in the emergence of two
research paradigms, i.e., supply-centric (focused on the transportation
of relief supplies) and beneficiary-centric (focused on the transportation
of evacuees) paradigms. Motivated by the above background, we
consider the integration of the three types of decisions that are of in-
terest to decision makers when conducting HRLN design, i.e., emergency
facility (i.e., distribution centers and relief shelters) location, relief in-
ventory pre-positioning, and human evacuation planning. With the help
of the advanced distributionally robust optimization (DRO) technique,
we model this integrated decision-making problem as a two-stage DRO
model. Each stage of our model involves decisions for pre- and post-
disaster periods. We use the type-1 Wasserstein metric to construct an
ambiguity set to describe the distribution function of uncertain param-
eters in the model (i.e., the number of evacuees and the road capacity).
To solve the above model, we design two customized decomposition
algorithms (i.e., single-cut and multi-cut versions) based on the classical
L-shaped algorithm. In addition, several numerical experiments on the
Yushu earthquake in China are carried out to verify the effectiveness of
the DRO model and algorithms.

Table 8
Average, maximum and minimum disappointment values of the two models.

Item Our model (5) SP model with SAA

Maximum 4.60 % 6.08 %
Minimum 0.00 % 0.00 %
Average 0.93 % 1.22 %
90th percentile 3.11 % 4.11 %
95th percentile 3.71 % 4.89 %

Fig. 7. Disappointment values of our model with different θ.
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The results show that the proposed two-stage DRO model, which
considers both the relief supply flow and the evacuee flow, can provide
critical managerial insights for decision makers. First, we illustrate the
effect of considering evacuee flow in the design of humanitarian logistics
networks. Obviously, the transport of the transfer population (i.e.,
evacuee) and relief supply creates conflicts in the use of infrastructure (i.
e., road capacity). Moreover, the implementation of evacuation plan-
ning can also cause changes in the demand for relief supplies at different
nodes. Numerical experiments show that models that do not consider
evacuation planning result in higher total costs. Second, we analyze the
location and transport schemes under different scales of uncertainty.
The conclusions obtained can help decision makers reach reliable and
efficient solutions in the preparation and response-stages under different
uncertainties. Third, we discuss the relationship between the penalty
cost and the total cost and quantity of pre-positioned relief supplies. Two
thresholds are clearly found for the effect of penalty costs on the optimal
solution. This finding can provide advice to decision makers on the
trade-off between effectiveness and cost objectives. Finally, the out-of-
sample analyses carried out show that our model and algorithm have
favorable out-of-sample performance and are able to combat various
uncertainty scenarios well. There is at most a 20 % variation in total
costs among all distribution scenarios.
Future studies can consider more relief supply distribution modes,

such as adding drone transportation to our model framework. The
ability to collect real-world data as much as possible to verify the
effectiveness of the model and the algorithm is also a research idea. In
addition, considering fairness constraints in the model framework to

achieve a fair distribution of the relief supply and introducing risk in-
dicators to obtain risk-averse solutions are also interesting research
directions.
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Appendix A:. Proofs of Theorems

Proof of Theorem 1. Proof. For a given (x, h, λ), function Θn(x, h, λ) can be expressed as:

Θn(x, h, λ) = max
ζ̃∈Ξ

{gd(x, h, ζ̃) − λdis(ζ̃, ζ̂
n
) } (A1)

Then, according to the definition of dis(ζ̃, ζ̂
n
), we can derive

dis(ζ̃, ζ̂
n
) = dis

((

ξ̃ij, δ̃i

)

,
(

ξ̂
n
ij, δ̂

n
i

)
)

=
∑

(i,j)∈A

max

{

w+

(

ξ̃ij − ξ̂
n
ij

)

,w−

(

ξ̂
n
ij − ξ̃ij

)}

+
∑

i∈NP

max
{

w+

(

δ̃i − δ̂
n
i

)

,w−

(

δ̂
n
i − δ̃i

)}

.

For all ξ̃ij, there exist two cases, i.e., ξ̃ij⩽ξ̂
n
ij and ξ̃ij⩾ξ̂

n
ij. The function Θn(x,h, λ) is a linear function associated with ξ̃ij. Thus, an optimal value of ξ̃ij is

obtained at ξ̃ij = ξ̂
n
ij or ξij for the first case and ξ̃ij = ξ̂

n
ij or ξij for the second case. Therefore, there must be ξ̃ij = ξ̂

n
ij, ξij, or ξij in an optimal solution of

function Θn(x,h, λ). (Q.E.D.).

Proof of Theorem 2. Proof.Without loss of generality, we first focus on the bilinear term ξ̃ijφij. The reformulations of the other bilinear terms are
similar. Note that there are still bilinear terms β+

ij φij and β−
ij φij associated with φij, so we introduce two variables, Λ+

ij and Λ−
ij . Then, we let term

(
ξij − ξ̂

n
ij

)
Λ+

ij +
(

ξij − ξ̂
n
ij

)
Λ−

ij +ξ̂
n
ijφij replace term ξ̃ijφij in the model and add the following constraints:

Λ+
ij ⩽Mβ+

ij ∀(i, j) ∈ A (A2)

Λ+
ij ⩽φ1ij∀(i, j) ∈ A (A3)

Λ+
ij ⩾φ1ij − M

(
1 − β+

ij

)
∀(i, j) ∈ A (A4)

Λ−
ij ⩽Mβ−

ij ∀(i, j) ∈ A (A5)

Λ−
ij ⩽φ1ij∀(i, j) ∈ A (A6)

Λ−
ij ⩾φ1ij − M

(
1 − β−

ij

)
∀(i, j) ∈ A (A7)
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Λ+
ij ,Λ−

ij ⩾0∀(i, j) ∈ A (A8)

where M is a sufficiently large positive number.
Similarly, by applying the same techniques to δ̃iπi and δ̃iωi, we can derive the mixed-integer (binary) linear formulation proposed in Theorem 2. (Q.

E.D.).
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